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Abstract— As an important biometric feature, human gait has
great potential in video-surveillance-based applications. In this
paper, we focus on the matrix representation-based human gait
recognition and propose a novel discriminant subspace learning
method called sparse bilinear discriminant analysis (SBDA).
SBDA extends the recently proposed matrix-representation-based
discriminant analysis methods to sparse cases. By introducing
the L1 and L2 norms into the objective function of SBDA, two
interrelated sparse discriminant subspaces can be obtained for
gait feature extraction. Since the optimization problem has no
closed-form solutions, an iterative method is designed to compute
the optimal sparse subspace using the L1 and L2 norms sparse
regression. Theoretical analyses reveal the close relationship
between SBDA and previous matrix-representation-based dis-
criminant analysis methods. Since each nonzero element in each
subspace is selected from the most important variables/factors,
SBDA is potential to perform equivalent to or even better than
the state-of-the-art subspace learning methods in gait recognition.
Moreover, using the strategy of SBDA plus linear discriminant
analysis (LDA), we can further improve the performance. A set
of experiments on the standard USF HumanID and CASIA gait
databases demonstrate that the proposed SBDA and SBDA +
LDA can obtain competitive performance.

Index Terms— Feature extraction, gait recognition, linear
discriminant analysis (LDA), sparse regression.

I. INTRODUCTION

RECENT research [1], [2] has shown that individuals have
distinctive and special ways of walking, which can be
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used to identify different individuals. Therefore, human gait
recognition has attracted much attention in the field of pattern
recognition and it can be widely used in video-surveillance-
based identification and safety monitoring. The advantage of
gait recognition is that it can be captured from a distance and
recognize the individuals without being obtrusive.

There are numerous schemes proposed for gait recognition
in the past decade, which can be roughly divided into two
categories: 1) model-based and 2) motion-based techniques.
The model-based techniques [3]–[5] used the model para-
meters fitted to describe the human body structure, while
the motion-based techniques employed a low-dimensional
compact representation to describe the motion patterns of the
human body. Compared with the time-series-based silhouette
representation [1], previous research [6], [7] had demonstrated
that the gray-level average silhouette over a gait cycle was
an efficient and effective representation for gait recognition.
As a result, motion-based techniques were developed very fast
and a lot of effective algorithms were proposed to obtain the
low-dimensional representation of the gait for recognition. In
particular, subspace learning methods have attracted increasing
attention in recent years.

As two classical subspace learning methods to obtain the
low-dimensional compact representation, principal compo-
nent analysis (PCA) [8]–[10] and linear discriminant analysis
(LDA) [11]–[13] were also used for gait recognition [14]–[16].
Since the average silhouette was directly represented in the
form of a matrix, Xu et al. [17] proposed to use the cou-
pled subspace analysis (CSA) [18] and discriminant analysis
with tensor representation (DATER) [19] for gait recognition.
Tao et al. [20] proposed the general tensor discriminant
analysis (GTDA) [20] for gait recognition. By exploiting
the local structure information of the data set, discriminant
locally linear embedding [21] and matrix marginal Fisher
analysis (MMFA) [22] can also achieve competitive per-
formance on gait recognition. Recently, the new distance
measure [23] based on the integer programming method,
multilevel features [24], and spatio-temporal neighborhood
topology features [25] were also proposed for gait recognition.

With the fast development of the subspace learning meth-
ods, the recently proposed sparse subspace learning meth-
ods attracted much attention, owing to the nature of the
L1 norm minimization for sparse feature selection [26],
[27] and the robustness in recognition tasks [28]. The least
absolute shrinkage and selection operator [29], least angle
regression [30], and the elastic net [31] were widely used
for feature selection and obtained better performances than
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the ordinary least squares regression. Using the L1 norm
sparse learning models, Zou et al. [26] reformulated the PCA
as regression-type optimization and proposed sparse PCA
(SPCA) [26] to achieve the goal of spare feature selection
and dimensionality reduction with interpretabilities. Using the
label information, sparse discriminant analysis (SDA) [32]
and sparse LDA (SLDA) [33] were proposed for learning
a sparse discriminant subspace for feature extraction and
classification in biological or medical data analysis, such as
microarrays. Based on maximal marginal criterion, sparse
tensor discriminant analysis (STDA) [34] was proposed for
face and action feature extraction. These sparse regression
based methods have been proved to be effective for classi-
fication and prediction.

Until now, though sparse subspace learning methods have
been used in many fields, gait recognition with sparse man-
ner has not been investigated and how to extend the dis-
criminant analysis algorithms with sparseness to the natural
representation of gait recognition is unsolved. These sparse
learning methods mentioned above may not be suitable for
gait recognition due to the following two reasons: first, the
gait silhouette is directly represented in the form of matrix
but these sparse subspace methods cannot operate on the
silhouette matrix; second, if these methods are used for
learning the discriminant subspace on larger than 10 000
(128 × 88 = 11264)-dimensional vector space concatenated
by the silhouette matrix, the computation burden will be
very large and the underlying structure information of the
second-order silhouette matrix will be lost. Therefore, it is
desirable to design new algorithms for this special case of
gait feature extraction and recognition.

In this paper, inspired by recent advances in matrix-based
dimensionality reduction algorithms [18]–[21] and the sparse
subspace learning algorithms, we propose matrix-based sparse
bilinear discriminant analysis (SBDA) directly handling gray-
level averaged images as 2-D data for feature extraction
and classification. Our starting point is to introduce the
L1 and L2 norms penalty on the projection vectors/matrices
and use sparse regression method to select the most discrim-
inant features/variables to form the projections. Thus, two
interrelated sparse projection vectors/matrices formed by the
important discriminant variables embedded in the gait matrices
are obtained. Therefore, it is expected to explore the more
powerful discriminant subspaces than other methods for gait
recognition.

SBDA has two significantly different properties from the
existing tensor/matrix-based feature extraction methods. First,
different from the existing tensor-based methods, such as
the MMFA, DATER, and GTDA, in which the discriminant
subspaces are nonsparse, all the projection vectors/matrices of
SBDA are sparse. Second, the optimal bilinear sparse discrim-
inant subspaces of SBDA are obtained using the elastic net
regression, whereas previous matrix-based subspace learning
methods solve the eigenequations. Although both STDA and
SBDA use the elastic net regression to compute the sparse
solutions, it is worthy to note that the proposed SBDA in
this paper is not the bilinear version/case of STDA and the
image matrix-based STDA cannot degrade to be SBDA and

vice versa. The key ideas, the models, and the optimization
procedures of STDA and SBDA are all different.

The main contributions of this paper are as follows: first,
we define a novel divergence bilinear scatter value, which
is integrated to the matrix-representation-based discriminant
analysis. By introducing the L1 and L2 norms penalty terms,
the sparse discriminant subspace can be obtained from an
alternately iterative procedures using elastic net. Second,
the relationships between SBDA and other algorithms, i.e.,
DATER and 2-D LDA, are theoretically analyzed. Third,
methodologically speaking, this paper provides a novel idea
on how to design the different scatter matrices to solve the
sparse multicorrelated constraint learning model in discrim-
inant analysis, which is significantly different from SPCA,
SLDA, and STDA.

The rest of this paper is organized as follows. In Section II,
SBDA algorithm and related analyses are presented.
In Section III, theoretical analysis is presented for investigating
the relationships between SBDA and the previous methods,
and the convergence and the computational complexity are also
given. Experiments are carried out to evaluate SBDA algorithm
in Section IV for gait recognition, and the conclusion is given
in Section V.

II. SPARSE BILINEAR DISCRIMINANT ANALYSIS

In this section, we first present the idea of SBDA and
briefly define some basic bilinear notations, definitions,
and operations, and then present the SBDA algorithm.

A. Idea and Preparation for SBDA

Assume that the training samples are represented as the
matrix {Xi ∈ Rm1×m2 , i = 1, 2, . . . , N}, where N denotes the
total number of the training samples. Moreover, let Nc and Nci

denote the total numbers of the classes and samples in the i th
class, respectively.

Since previous research shows that the matrix-based feature
extraction algorithms can obtain competitive performance on
gait recognition, in this way, the goal of the SBDA is also to
obtain two projection matrices U ∈ Rm1×d1 (d1 ≤ m1) and
V ∈ Rm2×d2 (d2 ≤ m2) that map the original silhouette image
into a low-order feature matrix

Yi = U T Xi V . (1)

Different from previous methods, the two projections of
SBDA are sparse. Our idea is to introduce the sparsity in the
two projection matrices U and V for feature selection. To
enhance the discriminant ability of the algorithm, the sparsity
and Fisher criterion are combined together to select the most
useful discriminant features for classification.

Let us give an intuitive example to show how the proposed
method is suitable for gait recognition. Suppose X1 and X2
denote the Gallery gait with shoe and the Probe gait with-
out shoe of somebody, the upper parts of the matrices in
X1 and X2 should be very similar, but the lower parts should
be very different since the only difference between them
is with or without shoe. If the proposed sparse learning
method can obtain two sparse projection for feature selection
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(for simplicity, let us take only one projection in U and
V for example, that is, U = u1 = (0, 0, 1, 1, 0, . . . , 0)T

and V = v1 = (0, 1, 0, 1, 0, . . . , 0)), then we obtain the
low-dimensional feature Y1 = uT

1 X1v1 and Y2 = uT
2 X2v2.

From the matrix multiplication, we can find that the bottom
part of the matrices X1 and X2 have no contribution to Y1 and
Y2, due to the zero elements at the posterior part of projection
u1 (similarly, v1 will perform feature selection on the columns
of matrices X1 and X2). Thus, when we integrate the sparsity
with the Fisher criterion, the selected low-dimensional features
between the Gallery gait with shoe and the Probe gait without
shoe of somebody will be more similar (closer) than the
original features, which will be more suitable for classification
and thus potentially increase the algorithm’s discriminative
performance. Therefore, SBDA may be more suitable for
gait recognition. However, the nonsparse feature extraction
methods have no such function since the projections are not
sparse.

To achieve this goal, a set of definitions must be given at
first.

Definition 1: The matrix-based within-class bilinear scatter
value JW is defined as

JW (U, V ) =
Nc∑

j=1

Nci∑

i=1

∥∥U T Xi V − U T X̄ j V
∥∥2

F

=
Nc∑

j=1

Nci∑

i=1

tr
[(

U T Xi V − U T X̄ j V
)T

×(
U T Xi V − U T X̄ j V

)]
(2)

where ‖·‖F denotes the Frobenius norm of a matrix and X̄ j

denotes the mean value matrix of the average silhouette in the
j th class.

Definition 2: The matrix-based between-class bilinear scat-
ter value is defined as

JB(U, V ) =
Nc∑

i=1

Nci

∥∥U T X̄i V − U T X̄V
∥∥2

F

=
Nc∑

i=1

Nci tr
[(

U T X̄i V − U T X̄ V
)T

×(
U T X̄i V − U T X̄ V

)]
(3)

where X̄ denotes the mean value of the samples of all the
average silhouette images of the training samples.

To introduce the L1 and L2 norms learning into the SBDA
algorithm, we also need the following definition.

Definition 3: The matrix-based within-class divergence
bilinear scatter value JD is defined as

JD(U, V , PU , PV )

=
Nc∑

j=1

Nci∑

i=1

∥∥(PU − U)T (Xi − X̄ j )(PV − V )
∥∥2

F (4)

where PU and PV are also the projective matrices designed
for computing the sparse discriminant subspace with the same
size as U and V , respectively, and X̄ j denotes the mean value
matrix of the average silhouette in the j th class.

With the above preparations, we can directly present the
objective function of SBDA in the following section.

B. Objective Function of SBDA

One of the reasonable criteria is to minimize the within-
class bilinear scatter value JW and maximize the between-class
bilinear scatter value JB or let JB to be a constant, that is

min JW (U, V ) (5)

subject to JB(U, V ) = 1. (6)

The above optimization problem is the extension of the
classical LDA with matrix representation, which has been used
in DATER presented in [19]. The optimal solutions of this
problem can be obtained by solving a series of generalized
eigenequations. However, its solutions are not sparse. Since
DATER is very effective for matrix-based gait recognition, a
basic idea is to use the model of DATER to develop a more
robust algorithm in a sparse manner. To obtain the sparse
subspaces, the objective function of SBDA is to minimize
the discriminant function of the L1 and L2 norms penalty
optimization problem with a constraint that JB(U, V ) is a
constant

min J (U, V , PU , PV )

= min μJW (U, V ) + (1 − μ)JD(U, V , PU , PV )

+ α(‖PU ‖2
F + ‖PV ‖2

F ) +
∑

r

βr |pvr| +
∑

l

γl |pul |

subject to JB(U, V ) = 1 (7)

where 1 ≥ μ ≥ 0 is a suitable constant set by the user to
balance different terms, pvr is the r th column of PV , pul is the
lth column of PU , and |·| denotes the L1 norm of a vector. α is
the constant set by the user and βr s and γls are the coefficients
of the L1 norm, which can be optimally determined by the
elastic net [31]. Similar L1 and L2 norms regular techniques
were also proposed in [26], [32], and [33], which show the
robustness to feature extraction and recognition.

When μ �= 1, projection matrices PU and PV are defined as
the optimal projection of SBDA. If μ = 1, projection matrices
PU and PV have nothing to do with U and V . In this case,
PU and PV are forced to be zero matrices, and thus U and V
are defined as the optimal projections of SBDA.

The above optimization problem intrinsically inherits the
idea of classical LDA. Minimizing JW (U, V ) indicates
that the within-class bilinear scatter value should be min-
imized as much as possible with the constraint that the
between-class bilinear scatter value is a constant. Minimizing
JD(U, V , PU , PV ) requires that the divergence within-class
bilinear scatter value should approximate to zero, which means
PU → U and PV → V . Thus, the sparse projection matrices
PU and PV can be used for feature extraction, and thus the
discrimination performance of SBDA will be at least as good
as DATER or even better than DATER if we suitably set
the model parameters. Therefore, the projections with such
properties will be also powerful for discrimination.

To the best of our knowledge, there exist no closed-form
solutions for such complex objective function of SBDA, in
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which the variables both in the objective function and the
constraint are correlated (this is significantly differed from
SPCA, SDA, and STDA). Fortunately, the optimization prob-
lem can be converted into the following problem: to indepen-
dently determine two subspaces PU and PV to minimize the
within-class bilinear scatter value JW with the constraint that
JB is a constant with the L1 and L2 norms penalty. Therefore,
we can further obtain the sparse discriminant projections by
rewriting the optimization problem as a set of independent
regression problems. Thus, the key problem is to convert the
sparse optimization model into the existing models that are
easy to solve.

C. Solutions of the Optimization Problem

In this section, an iterative method is designed to solve the
optimization problem of SBDA. The proposed iterative method
includes two main steps and each step contains two substeps.
At first, we fix U and PU to compute V and PV . Under this
case, since there are still two variables, we further fix PV to
compute the optimal V and then fix optimal V to compute the
optimal PV . When the optimal V and PV are obtained, we
compute U and PU in the same way. Iterative computation
of these steps will be not terminated until the algorithm
converges. This will obtain the optimal sparse subspaces PU

and PV for feature extraction.
In the following, we fix U and PU to compute V and PV .

In this case, from Definitions 1–3, we have

JW (U, V ) = tr
(
V T SU

W V
)

(8)

JB(U, V ) = tr
(
V T SU

B V
)

(9)

JD(U, V , PU , PV ) = tr
[
(PV − V )T SV

D(PV − V )
]

(10)

where

SU
W =

Nc∑

j=1

Nci∑

i=1

(
U T Xi − U T X̄ j

)T (
U T Xi − U T X̄ j

)
(11)

SU
B =

Nc∑

i=1

Nci

(
U T X̄i − U T X̄

)T (
U T X̄i − U T X̄

)
(12)

SU
D =

Nc∑

j=1

Nci∑

i=1

[
(PU − U)T (Xi − X̄ j )

]T

×[
(PU − U)T (Xi − X̄ j )

]
. (13)

From (7) and (11)–(13), it is easy to have the following
optimization problem:

min
V ,PV

μtr
(
V T SU

W V
) + (1 − μ)tr

[
(PV − V )T SU

D (PV − V )
]

+ α
∥∥PV

∥∥2
F +

∑

r

βr
∣∣pvr

∣∣ (14)

subject to tr
(

V T SU
B V

)
= 1. (15)

For the above optimization problem, we first fix V to
compute the optimal PV and then fix optimal PV to compute
the optimal V .

For the given V , the first term of (14) becomes a constant.
Then, (14) reduces to

min
PV

(1 − μ)tr
[
(PV − V )T SU

D (PV − V )
]

+ α ‖PV ‖2
F +

∑

r

βr |pvr|. (16)

Let the SVD of SU
D = V DV̄ T = V̄

√
D̄(

√
D̄V̄ T ) = HU H T

U ,
then we get the following optimization problem:

min
PV

∥∥H T
U V − H T

U PV
∥∥2

F + α

1 − μ
‖PV ‖2

F

+
∑

r

βr

1 − μ
|pvr|. (17)

This optimization problem is equal to d2 independent elastic
net problem as

min
pi

∥∥H T
U vi −H T

U pi
∥∥2

2+ α

1 − μ
‖pi‖2

F +
∑

i

βi

1 − μ
|pi | (18)

where vi and pi are the i th column in V and PV , respectively.
For the fixed PV , (14) degrades to (19) with the constraint

of (15)

min
V

μtr
(

V T SU
W V

)
+(1−μ)tr

[
(PV −V )T SU

D (PV −V )
]
. (19)

Using Lagrange multiplier method, we obtain

J (V , λ) = μtr
(
V T SU

W V
)
+ (1−μ)tr

[
(PV −V )T SU

D (PV −V )
]

+ λ
[
1 − tr

(
V T SU

B V
)]

(20)

where λ is the Lagrange multiplier. Taking the derivative of
J (V , λ) with respect to V to be zero, we get

μSU
W V − (1 − μ)SU

D (PV − V ) − λSU
B V = 0 (21)

⇒
(
μSU

W + (1 − μ)SU
D − λSU

B

)
V = (1 − μ)SU

D PV

⇒ V =(1−μ)
[
μSU

W +(1−μ)SU
D −λSU

B

]−1
SU

D PV . (22)

Substituting (22) into (15), we get

tr

⎛

⎝
{
(1 − μ)

[
μSU

W + (1 − μ)SU
D − λSU

B

]−1
SU

D P
}T

SU
B ×

(1 − μ)
[
μSU

W + (1 − μ)SU
D − λSU

B

]−1
SU

D P

⎞

⎠

= 1. (23)

Thus, the optimal λ for (22) should satisfy (23). In fact, it
may be not easy to directly solve the optimal λ. One can use
the linear search method to get optimal λ from a big range.
A tractable and effective method is to simply set λ to be a
constant or to determine λ by experiments in applications,
which will not significantly affect the performance of the
algorithm in gait recognition. More details will be discussed
in Section IV.

The above procedures compute the V and PV when
U and PU are given/fixed.

Similarly, one can construct the matrix-based within-class
scatter matrix, between-class scatter matrix, and within-class
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TABLE I

SBDA ALGORITHM STEPS

divergence bilinear scatter matrix with respect to V and PV

as follows:

SV
W =

Nc∑

j=1

Nci∑

i=1

(
Xi V − X̄ j V

) (
Xi V − X̄ j V

)T

SV
B =

Nc∑

i=1

Nci

(
X̄i V − X̄V

) (
X̄i V − X̄V

)T

SV
D =

Nc∑

j=1

Nci∑

i=1

[
(Xi − X̄ j )(PV −V )

]
,
[
(Xi − X̄ j )(PV −V )

]T
.

Using the very similar procedures, we can compute the optimal
U and PU when V and PV are given. Since the procedures
are almost the same, we omit it in this paper.

The details of the SBDA algorithm steps are presented in
Table I.

III. THEORETICAL ANALYSIS

In this section, some theoretical analyses on SBDA algo-
rithm are presented. In addition, some properties of SBDA
are revealed to discuss the relationship between SBDA and
pervious discriminative analysis methods.

A. Theoretical Analysis on SBDA

For the optimization problem (7), it is obvious to get the
following property.

Property 1: If μ = 1, the optimization problem (7)
degrades to (5) and (6). That is, DATER is a special case
of SBDA.

Furthermore, the following theorems reveal the close rela-
tionship between SBDA and DATER.

Theorem 1: When U and PU are fixed, for any given
μ and V , if α → 0+ and βr → 0+, then PV → V .

Proof: Please see the Appendix.
Similarly, it is easy to prove Theorem 2.
Theorem 2: When V and PV are fixed, for any given μ and

U , if α → 0+ and γl → 0+, then PU → U .
From Property 1 and Theorems 1 and 2, the following

conclusion can be drawn.
Corollary 1: Let U∗ and V ∗ be the optimal projections of

DATER. If α → 0+, βr → 0+ and γl → 0+, then PV → V ∗
and PU → U∗.

Thus, from the above analysis, it could be guaranteed
that the optimal projections of the proposed SBDA can
approximate to the previous ones derived from DATER, which
is proved to be very effective for gait recognition [19]. There-
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fore, the discrimination performance of SBDA will at least
as good as DATER or even better than DATER by suitably
tuning the model parameters. Therefore, these properties show
that the discriminant ability of SBDA will be also powerful
for gait recognition.

B. Case Study on SBDA

This section provides a general case of the image-based
sparse subspace learning method. However, if one wants a
single subspace for feature extraction, the model of SBDA
degrades to be a more simple case. For example, if one only
want to compute the PV for feature extraction, then U and
PU will vanish from the definitions and SBDA optimization
model. In this case, we have

min
V ,PV

μtr
(

V T SW V
)

+ (1 − μ)tr
[
(PV − V )T SW (PV − V )

]

+α ‖PV ‖2
F +

∑
r
βr |pvr| (24)

subject to tr(V T SB V ) = 1 (25)

where

SW =
Nc∑

j=1

Nci∑

i=1

(Xi − X̄ j )
T (Xi − X̄ j )

SB =
Nc∑

i=1

Nci (X̄i − X̄)T (X̄i − X̄).

That is, the matrix-based divergence within-class bilinear
scatter matrix SU

D degrades to be SW . In fact, SW and SB

are the within-class and between-class image scatter matrices
in 2-D LDA [35]. Since the variables U and PU vanish in
the model, the optimization problem becomes easy to solve.

For the fixed PV , optimization problem (24), (25) degrades
to

min
V

μtr(V T SW V ) + (1 − μ)tr
[
(PV − V )T SW (PV − V )

]

subject to tr(V T SB V ) = 1. (26)

Using Lagrange multiplier method, we have

(μSW − λSB )V = (1 − μ)SW PV . (27)

That is

V = (1 − μ)[μSW − λSB ]−1SW PV . (28)

For the fixed V , optimization problem (24), (25) gives

min
PV

(1 − μ)tr
[
(PV − V )T SW (PV − V )

]

+α ‖PV ‖2
F +

∑

r

βr |pvr|. (29)

Let the SVD of

SW = V̄W D̄V̄ T
W = V̄W

√
D̄W

(√
D̄W V̄ T

W

)
= HW H T

W . (30)

Then, from (29) and (30), we get the optimization problem

min
PV

∥∥∥H T
W V − H T

W PV

∥∥∥
2

F
+ α

1 − μ
‖PV ‖2

F

+
∑

r

βr

1 − μ
|pvr|. (31)

From the above analysis, we can draw the following
conclusion.

Theorem 3: Let V be the optimal projection matrix of 2-D
LDA. If lim

μ→1−
α/1 − μ = 0 and lim

μ→1−
βr/1 − μ = 0, then

PV → V .
Proof: Please see the Appendix.

The above theorem shows that when μ → 1−, SBDA
derives the discriminant subspace approximating to 2-D LDA,
which is proved to be very effective and efficient in matrix
representation-based face recognition.

C. Computational Complexity and Convergence
Analysis for SBDA

1) Computational Complexity: for simplicity, we assume
that m1 = m2 = m. The main computational complexity of
SBDA contains two parts: to compute the inverse matrix to
get V (or U) and to compute the sparse PV (or PU ) using
the elastic net algorithm. The cost to compute the inverse
matrix is O(m3) and the cost to compute the sparse subspace
is at most O(m3). Thus, the total computational complexity
is O(TmaxTENm3), where TEN and Tmax are the iteration
numbers in the inner loop and the outer loop of SBDA,
respectively. Although many loops are required for SBDA,
it is still computationally much more efficient than the high-
dimensional vector based methods, such as LDA [LDA needs
O(m6)], since the iteration numbers are usually small.

2) Convergence of SBDA: SBDA converges fast with the
similar manners to other matrix-based methods. For the con-
vergence of SBDA, we have the following theorem.

Theorem 4: The iterative procedures of SBDA presented in
Table I will converge to a local optimum.

Proof: Please see the Appendix.
In Section IV, it will be shown that the proposed SBDA

algorithm converges very fast in real-world applications.

IV. EXPERIMENT

In this section, a set of gait recognition experiments are
presented to evaluate the proposed SBDA algorithm. In addi-
tion, some previous subspace learning-based gait recognition
algorithms will be compared with the SBDA.

A. USF HumanID Database and Its Matrix Representation

In this paper, we focus on the learning algorithm for gait
recognition applications, and thus we start our analysis from
the binary image sequences. As shown in [6] and [7], the
complete sequence is partitioned into several subsequences
according to the gait period length, which is provided in [1]
in the USF HumanID database. For each sequence, the binary
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Fig. 1. Normalized and aligned binary silhouettes on USF HumanID database. Each row represents a different image sequence of the same person. The
rightmost column shows the corresponding gray-level average silhouettes of the leftmost seven columns.

TABLE II

USF HUMANID GAIT DATABASE (V—VIEW, S—SHOE, U—SURFACE, B—BRIEFCASE, AND T—TIME)

silhouette images within a single gait cycle are averaged to
acquire several gray-level average silhouette images ASi by

ASi = 1

NGait

k=i NGait∑

k=(i−1)NGait+1

S(k), i =1, 2, . . . ,

[
T

NGait

]
(32)

where S = {S(T ), . . . , S(T )} denotes the binary images for
one sequence, T is the total number of frames, and [T/NGait]
denotes the floor function, which is the largest integer that is
not larger than [T/NGait].

On the USF HumanID database, the training set comprises
all of the gray-level average silhouette images from all of the
sequences in the Gallery set, and the test set comprises the
average silhouette images from all of the sequences in the
related Probe set. We note that, in the USF HumanID database,
there are no overlapped sequences between the Gallery and
Probe sets. Some samples are shown in Fig. 1. Table II shows
the information of the Probe set and Gallery set. In addition,
more details about the database can be found in [1].

B. Parameters’ Setting of SBDA and Its Properties

1) Convergent Property: As it is shown in Fig. 2(a),
SBDA algorithm converges very fast. Similar to other image-
representation-based methods, SBDA usually converges within
several iterations. Our empirical research indicates that even
if the number of the iteration is equal to one, SBDA can
also give acceptable recognition rate compared with previous
subspace learning method. As it is shown in Fig. 3(b), the
recognition rate of SBDA is almost not affected significantly
by the number of iterations, so one can simply set the number
of iterations as a small integer.

2) Parameters’ Setting: There are four other parameters
in SBDA algorithm. The recognition rate versus the varia-
tions of the parameters can be observed in Fig. 2. In the
experiments, the sparsity parameter cardinality K , i.e., the
number of the nonzero elements in the projection, varies
in the range of [1, 15] since a larger cardinality cannot
achieve higher recognition rates, as it is shown in Fig. 2(b).
When using the elastic net, the parameter α is simply set to

be 0.01, and thus β can be automatically determined since
the elastic net algorithm could provide the optimal solution
path of β [31]. The balance parameter μ is selected from
{0.01, 0.1, . . . , 0.9, 0.99}. The model parameter λ(lambda) is
selected from {10−5, 10−4, . . . , 105}. In addition, the optimal
sparse subspace dimensions is ranged in [1, 20]. All the
parameters are varied in the corresponding ranges to search
the best performance. The experimental procedures are the
same as in [20], [22], and [36].

Fig. 2(c) shows that when the L2 norm penalty parameter is
set to be zero (i.e., without L2 norm terms in the model), the
performance of SBDA is usually slightly lower than the case
with suitable settings. This indicates that combining the L1 and
L2 norms penalty in SBDA can enhance the performance.

As it is shown in Section III that when μ → 1−, SBDA
approximates to DATER/2DLDA. It can be observed from
Fig. 2(d) that SBDA achieves higher recognition rates when μ
is far from 0.99, which is approximates to one. This indicates
that SBDA will at least perform as good as or even better
than DATER/2DLDA in gait recognition. Fig. 3(a) shows the
variation of recognition rate versus the value of lambda. It is
shown that when lambda takes a smaller value, SBDA always
obtains good performance.

C. Feature Extraction and Classification

We compared our algorithm with several other state-of-the-
art algorithms in Tables II and III, in which Rank-1 indicates
that the correct subject is ranked as the top candidate, while
Rank-5 indicates that the correct subject is ranked among the
top five candidates, and Average is the recognition accuracy
among all the Probe sets (i.e., the ratio of correctly recognized
persons to the total number of persons in all the Probe sets).
These algorithms include baseline [1] LDA [7] image Euclid-
ean distance (IMED) [37], IMED + LDA, hidden Markov
Model [38], LDA + Sync [7], LDA + fusion [7], image-
to-class [23], MMFA [22], GTDA [20], CSA + DATER [17],
and periodicity feature vector + discriminantive locality align-
ment [36]. The results for IMED and IMED + LDA are
from [20].
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Fig. 2. Some properties of SBDA algorithm for gait recognition. (a) Convergence of SBDA. (b) Recognition rate versus the number of cardinality.
(c) Recognition rate versus parameter alpha. (d) Recognition rate versus parameter μ.

Fig. 3. Some properties of SBDA algorithm for gait recognition. (a) Recognition rate versus the value of lambda. (b) Recognition rate versus the number
of iteration.

Considering that the median operation is more robust to
noise effects than the traditional minimum operation, we use
the same distance measure for Gallery and Probe sequences as

in [1], [6], and [17]. The Rank-1 and Rank-5 recognition rates
of SBDA and the compared methods are listed in Tables III
and IV. Note that the recognition rates of previous methods in
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TABLE III

COMPARISON OF RECOGNITION RATE (%) ON THE USF HUMANID GAIT DATABASE (RANK-1)

TABLE IV

COMPARISON OF RECOGNITION RATE (%) ON THE USF HUMANID GAIT DATABASE (RANK-5)

Tables III and IV are directly obtained from the corresponding
references.

Since the low-dimensional feature matrix Yi = PT
U Xi PV

(i = 1, 2, . . . , N) obtained by SBDA is a d1 × d2 matrix,
when it is concatenated column by column to be a vector, its
dimension may be still high. Motivated by IMED + LDA,
CSA + LDA, and the classical PCA + LDA algorithm, we
proposed SBDA + LDA for further dimensionality reduction
on gait features. Thus, the features’ between-class separability
and within-class compactness will be further improved in the
subspace of LDA, which will increase the recognition rate.

D. Experiments on CASIA Gait Database

The proposed method was tested on the CASIA gait
database (data set-B) [39] to evaluate its effectiveness and
robustness. The CASIA-B data set contains 124 subjects’
gaits sequences collected under different views, clothing and
carrying conditions. There are 11 views (0°, 18°, . . . , 180°)
for each subject and ten sequences per view. Among all the
ten sequences, two sequences are walking with bag, two on
coat, and the rest are normal walking. In this paper, 2750
gait sequences from 25 subjects were used in the experiment.

We select the most competitive and correlated methods, i.e.,
LDA, DATER, CSA + DATER, MMFA, GTDA, and image-
to-class, as the compared methods. The experiments were
repeated ten times by randomly splitting the database to be
the Probe set and the Gallery set. The average recognition
rate and the standard deviation of these methods, including
the proposed SBDA and SBDA + LDA, are listed in Table V.
It can be found that the proposed methods also perform better
than the compared subspace learning methods under different
views, clothing and carrying conditions.

E. Discussion

Based on the experimental results shown in the above sec-
tions, the following observations and conclusions are obtained.

1) It can be found from the experiments that SBDA per-
forms equivalent to or even better than the state-of-the-
art subspace learning algorithms on average recognition
rates. In most of the cases, SBDA performs better
than the previous subspace learning methods, such as
DATER and GTDA. It can be found that SBDA has the
same or better recognition rates when it is compared
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TABLE V

COMPARISON OF AVERAGE RECOGNITION RATE (%) AND STANDARD DEVIATION ON THE CASIA GAIT DATABASE

with DATER, which supports the theoretical analysis
presented in Section IV that the subspaces of DATER
can be approximated by those of SBDA. The better
performance of SBDA indicates that combining the
L1 and L2 norms for sparse subspace learning with
matrix representation can obtain more discriminative
information than the classical linear methods or matrix
representation-based nonsparse methods.

2) SBDA + LDA can obtain better performance than
SBDA in gait recognition. The reason is that using the
L1 norm for sparse discriminant learning with matrix
representation can avoid the overfitting, and thus it can
be more robust or obtain more generalization abilities
than the LDA-based methods. With the robust features
from SBDA, LDA can further enhance the recognition
rates. Similar results can also be found in IMED + LDA
and CSA + DATER.

3) Although MMFA, DATER, GTDA, and SBDA all use
the very similar discriminant information, adding the
L1 and L2 norms terms for sparse learning in SBDA,
the performance can be enhanced. This proves that
introducing the sparsity constraint to learn the dis-
cirminant subspace is a tractable method for improving
the performance on gait recognition. Although image-
to-class method obtains the very similar performance
with SBDA, once the discriminant projections of SBDA
are obtained from the training steps, it will be more
convenient and efficient for SBDA to perform feature
extraction and classification than image-to-class method,
which has to (frequently) solve the optimal binary flow
problem for each Probe gait.

4) Among the most competitive three subspace learning
methods, i.e. MMFA, GTDA, and SBDA, no one is
the complete winner in all the cases. MMFA obtains
the best performance on Probe set K , the main reason
may be that the local structure plays an important role
when there are time difference between Gallery and
Probe sets since GTDA and SBDA do not introduce
the locality in the learning step. However, in the Probe
set C, GTDA performs best, which indicates that direct
feature extraction on the high-order tensor data instead
of average silhouettes can also obtain high recognition
rate in some special case. However, the disadvantage of
GTDA is that its computational complexity is higher
than the ones of the average silhouette matrix-based
MMFA and SBDA. Usually, SBDA can perform as well
as (or even better than) the better results of GTDA and
MMFA in most of the cases, which shows the advantages
originated from sparse feature selection on the average

silhouette matrices. However, the disadvantage of SBDA
and GTDA is that they do not make use of the local
geometric structure of the data set. Thus, SBDA and
GTDA cannot perform better than MMFA in some
special cases when the local geometric structure plays
an important role in feature extraction and recognition.

V. CONCLUSION

A matrix-representation-based sparse subspace learning
method called SBDA was proposed in this paper for gait
recognition. The L1 and L2 norms were integrated to the
discriminant criterion, and thus a novel sparse learning model
was obtained. The optimal solutions of this model could
be computed by the iterative algorithm using the elastic net
regression. Theoretical analyses were presented to explore the
properties of SBDA and the relationships among SBDA and
previous algorithms were also presented. The experimental
results on the USF HumanID and CASIA gait databases show
that SBDA performs better than the state-of-the-art subspace
learning algorithms for gait recognition. In addition, with the
strategy of SBDA + LDA, the gait recognition rates can be
further enhanced. The experimental results also show that
SBDA is more robust than the compared methods in gait
variations and enforcing the sparsity on the projections can
obtain more generalization capability and robustness than the
previous subspace methods for gait recognition. This indicates
that introducing the sparsity in the projection vectors/matrices
can enhance the performance of the discriminative method. In
the future, we will explore different discriminative criterions
in the sparse manner for gait recognition.

APPENDIX

PROOF OF THEOREM 1

From (17), we have
∥∥H T

U V − H T
U PV

∥∥2
F + α

1 − μ
‖PV ‖2

F +
∑

r

βr

1 − μ
|pvr|

= tr

(
V T SU

D V − 2V T SU
D PV + PT

V SU
D PV + α

1 − μ
PT

V PV

)

+
∑

r

βr

1 − μ
|pvr| .

Since βr → 0+, then
∑

r βr/(1 − μ) |pvr| → 0 and it
vanishes. If we take the derivative of above equation with
respect to PV to be zero, the following equation can be
obtained:

PV =
(

SU
D + α

1 − μ
I

)−1

SU
D V = V (α → 0+).
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PROOF OF THEOREM 3

From (27), if μ → 1−, (1−μ)SW PV → 0 and μSW → SW ,
then (μSW −λSB)V = 0 ⇒ SW V = λSB V . This implies that
V contains the eigenvetors of the generalized eigenequation
of 2-D LDA.

For this given V , similar to the proof of Theorem 1, (31)
gives

PV =
(

SW + α

1 − μ
I

)−1

SW V = V ,

(
lim

μ→1−

α

1 − μ
= 0

)
.

That is, PV → V when these conditions are satisfied.

PROOF OF THEOREM 4

We need to prove that the objective function of SBDA is
nonincreasing and has a lower bound (at least bigger than a
constant c > 0). The original objective function of SBDA in
each iteration step can be rewritten as follows:

J
(
U (t−1), V (t−1), P(t−1)

U , P(t−1)
V

)

= μJW
(
U (t−1), V (t−1)

)

+ (1 − μ)JD
(
U (t−1), V (t−1), P(t−1)

U , P(t−1)
V

)

+ α
(∥∥P(t−1)

U

∥∥2
F + ∥∥P(t−1)

V

∥∥2
F

) +
∑

r

βr
∣∣p(t−1)

vr

∣∣

+
∑

l

γl
∣∣p(t−1)

ul

∣∣.

From the inner loop of the iteration procedures, we know
that the objective function achieves a local minimum when
U (t−1) and P(t−1)

U are given. Therefore, we have

J
(

U (t−1), V (t−1), P(t−1)
U , P(t−1)

V

)

≥ J
(

U (t−1), V (t), P(t−1)
U , P(t−1)

V

)

≥ J
(

U (t−1), V (t), P(t−1)
U , P(t)

V

)
. (A1)

On the other hand, when V (t) and P
(t)

V are given and fixed,
the value of the objective function can be further reduced from
the iteration, that is

J
(
U (t−1), V (t), P(t−1)

U , P(t)
V

)
≥ J

(
U (t), V (t), P(t−1)

U , P(t)
V

)

≥J
(

U (t), V (t), P(t)
U , P(t)

V

)
. (A2)

From (A1) and (A2), we have

J
(

U (t−1), V (t−1), P(t−1)
U , P(t−1)

V

)
≥ J

(
U (t), V (t), P(t)

U , P(t)
V

)

≥ c ≥ 0.

Therefore, the objective function will converge to a local
optimum. �
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[27] H. Chun and S. Keleş, “Sparse partial least squares regression for
simultaneous dimension reduction and variable selection,” J. R. Statist.
Soc. Ser. B, Statist. Methodol., vol. 72, no. 1, pp. 3–25, Jan. 2010.

[28] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[29] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. R. Statist. Soc., Ser. B, Statist. Methodol., vol. 58, no. 1,
pp. 267–288, 1996.

[30] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[31] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. R. Statist. Soc., Ser. B, Statist. Methodol., vol. 67, no. 2,
pp. 301–320, 2005.

[32] L. Clemmensen, T. Hastie, D. Witten, and B. Ersboll, “Sparse discrim-
inant analysis,” Technometrics, vol. 53, no. 4, pp. 406–413, 2011.

[33] Z. Qiao, L. Zhou, and J. Z. Huang, “Sparse linear discriminant analysis
with applications to high dimensional low sample size data,” IAENG Int.
J. Appl. Math., vol. 39, no. 1, pp. 48–60, 2009.

[34] Z. Lai, Y. Xu, J. Yang, J. Tang, and D. Zhang, “Sparse tensor
discriminant analysis,” IEEE Trans. Image Process., vol. 22, no. 10,
pp. 3904–3915, May 2013.

[35] J. Yang, D. Zhang, X. Yong, and J. Yang, “Two-dimensional discriminant
transform for face recognition,” Pattern Recognit., vol. 38, no. 7,
pp. 1125–1129, 2005.

[36] R. Hu, W. Shen, and H. Wang, “Recursive spatiotemporal subspace
learning for gait recognition,” Neurocomputing, vol. 73, nos. 10–12,
pp. 1892–1899, Jun. 2010.

[37] L. Wang, Y. Zhang, and J. Feng, “On the Euclidean distance of images,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1334–1339,
Aug. 2005.

[38] A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor,
A. K. R. Chowdhury, V. Kruger, et al., “Identification of humans using
gait,” IEEE Trans. Image Process., vol. 13, no. 9, pp. 1163–1173,
Sep. 2004.

[39] S. Yu, D. Tan, and T. Tan, “A framework for evaluating the effect of
view angle, clothing and carrying condition on gait recognition,” in Proc.
18th ICPR, Aug. 2006, pp. 441–444.

Zhihui Lai received the B.S degree in mathematics
from South China Normal University, Guangzhou,
China; the M.S degree from Jinan University,
Guangzhou; and the Ph.D. degree in pattern recogni-
tion and intelligence system from Nanjing University
of Science and Technology, Nanjing, China, in 2002,
2007, and 2011, respectively.

He was a Research Associate and a Post-Doctoral
Fellow with The Hong Kong Polytechnic University,
Hong Kong, from 2010 to 2014. He is currently
a Post-Doctoral Fellow with the Bio-Computing

Research Center, Shenzhen Graduate School, Harbin Institute of Technology,
Harbin. His research interests include face recognition, image processing and
content-based image retrieval, pattern recognition, compressive sense, human
vision modelization, and applications in the fields of intelligent robot research.

Yong Xu (M’06) received the B.S. and M.S. degrees
from Air Force Institute of Meteorology, Xi’an,
China, and the Ph.D. degree in pattern recognition
and intelligence system from Nanjing University of
Science and Technology, Nanjing, China, in 1994,
1997, and 2005, respectively.

He was a Post-Doctoral Research Fellow with
Shenzhen Graduate School, Harbin Institute of Tech-
nology, Harbin, China, from 2005 to 2007, where
he is currently a Professor. He was a Research
Assistant Researcher with The Hong Kong Poly-

technic University, Hong Kong, from 2007 to 2008. He has published more
than 40 scientific papers. His research interests include pattern recognition,
biometrics, and machine learning.

Zhong Jin received the B.S. degree in math-
ematics, the M.S. degree in applied mathemat-
ics, and the Ph.D. degree in pattern recognition
and intelligence system, all from Nanjing Uni-
versity of Science and Technology (NUST),
Nanjing, China, in 1982, 1984, and 1999, respec-
tively.

He was a Research Assistant with the Depart-
ment of Computer Science and Engineering,
the Chinese University of Hong Kong, Hong
Kong, from 2000 to 2001. He was with the

Laboratoire HEUDIASYC, Universite de Technologie de Compiegne,
Compiègne, France, from 2001 to 2002. He was the Ramon y Cajal Program
Research Fellow with the Centre de Visio per Computador, Universitat
Autonoma de Barcelona, Bellaterra, Spain, from 2005 to 2005. He is currently
a Professor with the Department of Computer Science, NUST. His research
interests include pattern recognition, computer vision, face recognition, facial
expression analysis, and content-based image retrieval.

David Zhang (F’06) received the degree in com-
puter science from Peking University, Beijing,
China; the M.Sc. degree in computer science and
a Ph.D. degree from Harbin Institute of Technology
(HIT), Harbin, China; and a second Ph.D. degree in
electrical and computer engineering from University
of Waterloo, Waterloo, ON, Canada, in 1982, 1986,
and 1994, respectively.

He was a Post-Doctoral Fellow with Tsinghua
University, Beijing, from 1986 to 1988, and an
Associate Professor with the Academia Sinica,

Beijing. He is currently a Head with the Department of Computing, and a
Chair Professor with The Hong Kong Polytechnic University, Hong Kong.
He is the Visiting Chair Professor with Tsinghua University and an Adjunct
Professor with Peking University, Beijing; Shanghai Jiao Tong University,
Shanghai; HIT; and University of Waterloo. He is the Founder and Editor-
in-Chief of International Journal of Image and Graphics, the Book Editor of
Springer International Series on Biometrics, the Organizer of the International
Conference on Biometrics Authentication, the Associate Editor of more
than ten international journals including IEEE TRANSACTIONS ON PATTERN

RECOGNITION, and the author of more than 10 books and 200 journal papers.
Prof. Zhang is a Croucher Senior Research Fellow, Distinguished Speaker

of the IEEE Computer Society, and a Fellow of IAPR.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


